首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   693篇
  免费   96篇
  2021年   6篇
  2018年   7篇
  2016年   5篇
  2015年   15篇
  2014年   12篇
  2013年   13篇
  2012年   30篇
  2011年   62篇
  2010年   67篇
  2009年   44篇
  2008年   24篇
  2007年   15篇
  2006年   27篇
  2005年   19篇
  2004年   37篇
  2003年   14篇
  2002年   19篇
  2001年   19篇
  2000年   24篇
  1999年   12篇
  1998年   17篇
  1997年   5篇
  1995年   7篇
  1994年   9篇
  1993年   7篇
  1992年   10篇
  1991年   13篇
  1990年   7篇
  1989年   16篇
  1988年   13篇
  1987年   9篇
  1986年   9篇
  1985年   9篇
  1984年   11篇
  1983年   11篇
  1981年   8篇
  1980年   10篇
  1979年   15篇
  1978年   12篇
  1977年   10篇
  1976年   6篇
  1975年   8篇
  1974年   7篇
  1973年   10篇
  1972年   11篇
  1971年   9篇
  1970年   11篇
  1969年   10篇
  1968年   4篇
  1966年   4篇
排序方式: 共有789条查询结果,搜索用时 400 毫秒
81.
Oceanithermus profundus Miroshnichenko et al. 2003 is the type species of the genus Oceanithermus, which belongs to the family Thermaceae. The genus currently comprises two species whose members are thermophilic and are able to reduce sulfur compounds and nitrite. The organism is adapted to the salinity of sea water, is able to utilize a broad range of carbohydrates, some proteinaceous substrates, organic acids and alcohols. This is the first completed genome sequence of a member of the genus Oceanithermus and the fourth sequence from the family Thermaceae. The 2,439,291 bp long genome with its 2,391 protein-coding and 54 RNA genes consists of one chromosome and a 135,351 bp long plasmid, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   
82.

Background

Emerging information technologies present new opportunities to reduce the burden of malaria, dengue and other infectious diseases. For example, use of a data management system software package can help disease control programs to better manage and analyze their data, and thus enhances their ability to carry out continuous surveillance, monitor interventions and evaluate control program performance.

Methods and Findings

We describe a novel multi-disease data management system platform (hereinafter referred to as the system) with current capacity for dengue and malaria that supports data entry, storage and query. It also allows for production of maps and both standardized and customized reports. The system is comprised exclusively of software components that can be distributed without the user incurring licensing costs. It was designed to maximize the ability of the user to adapt the system to local conditions without involvement of software developers. Key points of system adaptability include 1) customizable functionality content by disease, 2) configurable roles and permissions, 3) customizable user interfaces and display labels and 4) configurable information trees including a geographical entity tree and a term tree. The system includes significant portions of functionality that is entirely or in large part re-used across diseases, which provides an economy of scope as new diseases downstream are added to the system at decreased cost.

Conclusions

We have developed a system with great potential for aiding disease control programs in their task to reduce the burden of dengue and malaria, including the implementation of integrated vector management programs. Next steps include evaluations of operational implementations of the current system with capacity for dengue and malaria, and the inclusion in the system platform of other important vector-borne diseases.  相似文献   
83.
Hale LA  Fowler DK  Eisen JS 《PloS one》2011,6(10):e25841

Background

We previously showed that equivalence between two identified zebrafish motoneurons is broken by interactions with identified muscle fibers that act as an intermediate target for the axons of these motoneurons. Here we investigate the molecular basis of the signaling interaction between the intermediate target and the motoneurons.

Principal Findings

We provide evidence that Netrin 1a is an intermediate target-derived signal that causes two equivalent motoneurons to adopt distinct fates. We show that although these two motoneurons express the same Netrin receptors, their axons respond differently to Netrin 1a encountered at the intermediate target. Furthermore, we demonstrate that when Netrin 1a is knocked down, more distal intermediate targets that express other Netrins can also function to break equivalence between these motoneurons.

Significance

Our results suggest a new role for intermediate targets in breaking neuronal equivalence. The data we present reveal that signals encountered during axon pathfinding can cause equivalent neurons to adopt distinct fates. Such signals may be key in diversifying a neuronal population and leading to correct circuit formation.  相似文献   
84.
Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context.  相似文献   
85.
86.
We identify and consider some characteristics of a peptide antagonist for the Ag-specific receptor on 2C cells (the 2C TCR). The peptide, GNYSFYAL (called GNY), binds to H-2K(b), and a very high-resolution crystal structure of the GNY-K(b) complex at 1.35 A is described. Although the GNY peptide does not bind to L(d), the potency of GNY-K(b) as an antagonist is evident from its ability to specifically inhibit 2C TCR-mediated reactions to an allogenic agonist complex (QLSPFPFDL-L(d)), as well as to a syngeneic agonist complex (SIYRYYGL-K(b)). The crystal structure and the activities of alanine-substituted peptide variants point to the properties of the peptide P4 side chain and the conformation of the Tyr-P6 side chain as the structural determinants of GNYSFYAL antagonist activity.  相似文献   
87.
Anaplasma (formerly Ehrlichia) phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia) sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.  相似文献   
88.
Mannose-binding lectin (MBL) is an innate immune system pattern recognition molecule that kills a wide range of pathogens via the lectin complement pathway. MBL deficiency is associated with severe infection but the best measure of this deficiency is undecided. We investigated the influence of MBL functional deficiency on the development of sepsis in 195 adult patients, 166 of whom had bloodstream infection and 35 had pneumonia. Results were compared with 236 blood donor controls. MBL function (C4b deposition) and levels were measured by enzyme-linked immunosorbent assay. Using receiver-operator characteristics of MBL function in healthy controls, we identified a level of <0.2 U microL(-1) as a highly discriminative marker of low MBL2 genotypes. Median MBL function was lower in sepsis patients (0.18 U microL(-1)) than in controls (0.48 U microL(-1), P<0.001). MBL functional deficiency was more common in sepsis patients than controls (P<0.001). MBL functional deficient patients had significantly higher sequential organ failure assessment (SOFA) scores and higher MBL function and levels were found in patients with SOFA scores predictive of good outcome. Deficiency of MBL function appears to be associated with bloodstream infection and the development of septic shock. High MBL levels may be protective against severe sepsis.  相似文献   
89.
Knockdown of Nav1.6a Na+ channels affects zebrafish motoneuron development   总被引:2,自引:0,他引:2  
In addition to rapid signaling, electrical activity provides important cues to developing neurons. Electrical activity relies on the function of several different types of voltage-gated ion channels. Whereas voltage-gated Ca2+ channel activity regulates several aspects of neuronal differentiation, much less is known about developmental roles of voltage-gated Na+ channels, essential mediators of electrical signaling. Here, we focus on the zebrafish Na+ channel isotype, Nav1.6a, which is encoded by the scn8a gene. A restricted set of spinal neurons, including dorsal sensory Rohon-Beard cells, two motoneuron subtypes with different axonal trajectories, express scn8a during embryonic development. CaP, an early born primary motoneuron subtype with ventrally projecting axons expresses scn8a, as does a class of secondary motoneurons with axons that project dorsally. To test for developmental roles of scn8a, we knocked down Nav1.6a protein using antisense morpholinos. Na+ channel protein and current amplitudes were reduced in neurons that express scn8a. Furthermore, Nav1.6a knockdown altered axonal morphologies of some but not all motoneurons. Dorsally projecting secondary motoneurons express scn8a and displayed delayed axonal outgrowth. By contrast, CaP axons developed normally, despite expression of the gene. Surprisingly, ventrally projecting secondary motoneurons, a population in which scn8a was not detected, displayed aberrant axonal morphologies. Mosaic analysis indicated that effects on ventrally projecting secondary motoneurons were non cell-autonomous. Thus, voltage-gated Na+ channels play cell-autonomous and non cell-autonomous roles during neuronal development.  相似文献   
90.

Background  

Sequence changes in regulatory regions have often been invoked to explain phenotypic divergence among species, but molecular examples of this have been difficult to obtain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号